
Package: prevalence (via r-universe)
September 4, 2024

Type Package

Title Tools for Prevalence Assessment Studies

Version 0.4.1

Date 2022-06-03

Author Brecht Devleesschauwer [aut, cre], Paul Torgerson [aut],
Johannes Charlier [aut], Bruno Levecke [aut], Nicolas Praet
[aut], Sophie Roelandt [aut], Suzanne Smit [aut], Pierre Dorny
[aut], Dirk Berkvens [aut], Niko Speybroeck [aut]

Maintainer Brecht Devleesschauwer <brechtdv@gmail.com>

BugReports https://github.com/brechtdv/prevalence/issues

Description The prevalence package provides Frequentist and Bayesian
methods for prevalence assessment studies. IMPORTANT: the
truePrev functions in the prevalence package call on JAGS (Just
Another Gibbs Sampler), which therefore has to be available on
the user's system. JAGS can be downloaded from
<https://mcmc-jags.sourceforge.io/>.

Depends R (>= 4.0.0)

Imports methods, utils, stats, graphics, grDevices, coda, rjags

SystemRequirements JAGS (>= 4.0.0) (see
https://mcmc-jags.sourceforge.io/)

License GPL (>= 2)

URL http://prevalence.cbra.be/

LazyLoad yes

Repository https://brechtdv.r-universe.dev

RemoteUrl https://github.com/brechtdv/prevalence

RemoteRef HEAD

RemoteSha 62876ff82cc889aababb8fb208453e8c56f4d1fc

1

https://github.com/brechtdv/prevalence/issues
https://mcmc-jags.sourceforge.io/
http://prevalence.cbra.be/

2 prevalence-package

Contents
prevalence-package . 2
betaExpert . 3
betaPERT . 5
convert-methods . 7
define . 9
plot-methods . 11
plot-methods-coda . 12
prev-class . 13
print-methods . 14
propCI . 15
show-methods . 17
summary-methods . 18
truePrev . 18
truePrevMulti . 21
truePrevMulti2 . 26
truePrevPools . 31

Index 35

prevalence-package Tools for prevalence assessment studies

Description

The prevalence package provides Frequentist and Bayesian methods useful in prevalence assess-
ment studies. Visit http://prevalence.cbra.be/ for more information and tutorials.

Details

Package: prevalence
Type: Package
Version: 0.4.1
Date: 2022-06-03
BugReports: https://github.com/brechtdv/prevalence/issues
Depends: R (>= 4.0.0), rjags, coda, methods
SystemRequirements: JAGS (>= 3.2.0) (see https://mcmc-jags.sourceforge.io/)
License: GNU >= 2

Available functions in the prevalence package:

propCI Derive confidence intervals for an apparent prevalence estimate
truePrev Estimate TP from AP obtained by testing individual samples with a single test
truePrevMulti Estimate TP from AP obtained by testing individual samples with multiple tests, using a conditional probability scheme
truePrevMulti2 Estimate TP from AP obtained by testing individual samples with multiple tests, using a covariance scheme

http://prevalence.cbra.be/
https://github.com/brechtdv/prevalence/issues
https://mcmc-jags.sourceforge.io/

betaExpert 3

truePrevPools Estimate TP from AP obtained by testing pooled samples
betaPERT Calculate the parameters of a Beta-PERT distribution
betaExpert Calculate the parameters of a Beta distribution based on expert opinion

IMPORTANT: the truePrev functions in the prevalence package call on JAGS (Just Another
Gibbs Sampler), through the rjags package. Therefore, JAGS has to be installed on the user’s
system.

JAGS can be downloaded from https://mcmc-jags.sourceforge.io/

Author(s)

Creator, Maintainer
Brecht Devleesschauwer <<brechtdv@gmail.com>>

Contributors
Paul Torgerson, Johannes Charlier, Bruno Levecke, Nicolas Praet, Sophie Roelandt, Suzanne Smit,
Pierre Dorny, Dirk Berkvens, Niko Speybroeck

betaExpert Calculate the parameters of a Beta distribution based on expert infor-
mation

Description

The betaExpert function fits a (standard) Beta distribution to expert opinion. The expert provides
information on a best-guess estimate (mode or mean), and an uncertainty range:

• The parameter value is with 100*p% certainty greater than lower

• The parameter value is with 100*p% certainty smaller than upper

• The parameter value lies with 100*p% in between lower and upper

Usage

betaExpert(best, lower, upper, p = 0.95, method = "mode")

S3 method for class 'betaExpert'
print(x, conf.level = .95, ...)
S3 method for class 'betaExpert'
plot(x, y, ...)

Arguments

best Best-guess estimate; see argument method

lower Lower uncertainty limit

upper Upper uncertainty limit

https://mcmc-jags.sourceforge.io/

4 betaExpert

p Expert’s certainty level

method Does best-guess estimate correspond to the mode or to the mean? Defaults to
mode

x Object of class betaExpert

y Currently not implemented

conf.level Confidence level used in printing quantiles of resulting Beta distribution

... Other arguments to pass to function print and plot

Details

The methodology behind the betaExpert function is presented by Branscum et al. (2005) and im-
plemented in the BetaBuster software, written by Chun-Lung Su.

The parameters of a standard Beta distribution are calculated based on a best-guess estimate and a
100(p)% uncertainty range, defined by a lower and/or upper limit. The betaExpert function uses
minimization (optimize) to derive α and β from this best guess and lower and/or upper limit. The
resulting distribution is a standard 2-parameter Beta distribution: Beta(α, β).

Value

A list of class "betaExpert":

alpha Parameter α (shape1) of the Beta distribution

beta Parameter β (shape2) of the Beta distribution

The print method for "betaExpert" additionally calculates the mean, median, mode, variance
and range of the corresponding Beta distribution.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

Branscum AJ, Gardner IA, Johnson WO (2005) Estimation of diagnostic-test sensitivity and speci-
ficity through Bayesian modeling. Prev Vet Med 68:145-163.

See Also

Package rriskDistributions, which provides a collection of functions for fitting distributions to
given data or by known quantiles.

betaPERT, for modelling a generalized Beta distribution based on expert opinion

https://cran.r-project.org/package=rriskDistributions

betaPERT 5

Examples

Most likely value (mode) is 90%
Expert states with 95% certainty that true value is larger than 70%
betaExpert(best = 0.90, lower = 0.70, p = 0.95)

Most likely value (mode) is 0%
Expert states with 95% certainty that true value is smaller than 40%
betaExpert(best = 0, upper = 0.40, p = 0.95)

Most likely value (mode) is 80%
Expert states with 90% certainty that true value lies in between 40% and 90%
betaExpert(best = 0.80, lower = 0.40, upper = 0.90, p = 0.90)

Mean value is assumed to be 80%
Expert states with 90% certainty that true value lies in between 40% and 90%
betaExpert(best = 0.80, lower = 0.40, upper = 0.90, p = 0.90, method = "mean")

betaPERT Calculate the parameters of a Beta-PERT distribution

Description

The Beta-PERT methodology allows to parametrize a generalized Beta distribution based on expert
opinion regarding a pessimistic estimate (minimum value), a most likely estimate (mode), and an
optimistic estimate (maximum value). The betaPERT function incorporates two methods of calcu-
lating the parameters of a Beta-PERT distribution, designated "classic" and "vose".

Usage

betaPERT(a, m, b, k = 4, method = c("classic", "vose"))

S3 method for class 'betaPERT'
print(x, conf.level = .95, ...)
S3 method for class 'betaPERT'
plot(x, y, ...)

Arguments

a Pessimistic estimate (Minimum value)
m Most likely estimate (Mode)
b Optimistic estimate (Maximum value)
k Scale parameter
method "classic" or "vose"; see details below
x Object of class betaPERT
y Currently ignored
conf.level Confidence level used in printing quantiles of resulting Beta-PERT distribution
... Other arguments to pass to function print and plot

6 betaPERT

Details

The Beta-PERT methodology was developed in the context of Program Evaluation and Review
Technique (PERT). Based on a pessimistic estimate (minimum value), a most likely estimate (mode),
and an optimistic estimate (maximum value), typically derived through expert elicitation, the pa-
rameters of a Beta distribution can be calculated. The Beta-PERT distribution is used in stochastic
modeling and risk assessment studies to reflect uncertainty regarding specific parameters.

Different methods exist in literature for defining the parameters of a Beta distribution based on
PERT. The two most common methods are included in the BetaPERT function:

Classic: The standard formulas for mean, standard deviation, α and β, are as follows:

mean =
a+ k ∗m+ b

k + 2

sd =
b− a

k + 2

α =
mean− a

b− a
∗
{
(mean− a) ∗ b−mean

sd2
− 1

}
β = α ∗ b−mean

mean− a

The resulting distribution is a 4-parameter Beta distribution: Beta(α, β, a, b).

Vose: Vose (2000) describes a different formula for α:

(mean− a) ∗ 2 ∗m− a− b

(m−mean) ∗ (b− a)

Mean and β are calculated using the standard formulas; as for the classical PERT, the resulting
distribution is a 4-parameter Beta distribution: Beta(α, β, a, b).

Note: If m = mean, α is calculated as 1 + k/2, in accordance with the mc2d package
(see ’Note’).

Value

A list of class "betaPERT":

alpha Parameter α (shape1) of the Beta distribution

beta Parameter β (shape2) of the Beta distribution

a Pessimistic estimate (Minimum value)

m Most likely estimate (Mode)

b Optimistic estimate (Maximum value)

method Applied method

Available generic functions for class "betaPERT" are print and plot.

convert-methods 7

Note

The mc2d package provides the probability density function, cumulative distribution function,
quantile function and random number generation function for the PERT distribution, parametrized
by the "vose" method.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

Classic: Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for
research and development program evaluation. Oper Res 7(5):646-669.

Vose: David Vose. Risk analysis, a quantitative guide, 2nd edition. Wiley and Sons, 2000.
PERT distribution in ModelRisk (Vose software)

See Also

betaExpert, for modelling a standard Beta distribution based on expert opinion

Examples

The value of a parameter of interest is believed to lie between 0 and 50
The most likely value is believed to be 10

Classical PERT
betaPERT(a = 0, m = 10, b = 50, method = "classic")

Vose parametrization
betaPERT(a = 0, m = 10, b = 50, method = "vose")

convert-methods Methods for Function as.matrix in Package prevalence

Description

Convert objects of class prev to matrix

Usage

S4 method for signature 'prev'
as.matrix(x, iters = FALSE, chains = FALSE)

https://cran.r-project.org/package=mc2d
http://vosesoftware.com/ModelRiskHelp/index.htm\#Distributions/Continuous_distributions/PERT_distribution.htm

8 convert-methods

Arguments

x An object of class prev

iters Logical flag, indicating whether a column should be added for iteration number;
defaults to FALSE

chains Logical flag, indicating whether a column should be added for chain number;
defaults to FALSE

Methods

signature(x = "prev") Convert objects of class prev to matrix

See Also

prev-class

Examples

Not run:

Taenia solium cysticercosis 1-test model
cysti <-
truePrev(x = 142, n = 742,

SE = ~dunif(0.60, 1.00), SP = ~dunif(0.75, 1.00))

head(as.matrix(cysti))

Campylobacter 2-test model
campy <-
truePrevMulti(

x = c(113, 46, 156, 341),
n = 656,
prior = {
theta[1] ~ dunif(0.45, 0.80)
theta[2] ~ dunif(0.24, 0.50)
theta[3] <- 1
theta[4] ~ dbeta(30, 12)
theta[5] ~ dbeta(1, 1)
theta[6] <- 1
theta[7] <- 1

}
)

head(as.matrix(campy, iters = TRUE, chains = TRUE))

End(Not run)

define 9

define Definition of truePrevMulti and truePrevMulti2 model

Description

These utility functions generate definitions for the test results and priors used by truePrevMulti
and truePrevMulti2.

Usage

define_x(h)
define_prior(h)
define_prior2(h)

Arguments

h Number of tests

Details

The vector of apparent tests results, x, must contain the number of samples corresponding to each
combination of test results. The models assume that the first value corresponds to the number of
samples that tested positive on all tests and that the last value corresponds to the number of samples
that tested negative on all tests.

Function truePrevMulti estimates true prevalence from individual samples tested with h tests,
using the approach of Berkvens et al. (2006). The prior in the multinomial model consists of a
vector theta, which holds values for the true prevalence (TP), the sensitivity and specificity of the
first test (SE1, SP1), and the conditional dependencies between the results of the subsequent tests
and the preceding one(s). define_prior generates the definition of prior for h tests.

Function truePrevMulti2 implements and extends the approach described by Dendukuri and
Joseph (2001), which uses a multinomial distribution to model observed test results, and in which
conditional dependence between tests is modelled through covariances. Argument prior consists
of prior distributions for:

• True Prevalence: TP

• SEnsitivity of each individual test: vector SE

• SPecificity of each individual test: vector SP

• Conditional covariance of all possible test combinations given a truly positive disease status:
vector a

• Conditional covariance of all possible test combinations given a truly negative disease status:
vector b

define_prior2 generates the definition of prior for h tests.

10 define

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

• Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E (2006) Estimating disease prevalence
in a Bayesian framework using probabilistic constraints. Epidemiology 17:145-153

• Dendukuri N, Joseph L (2001) Bayesian approaches to modeling the conditional dependence
between multiple diagnostic tests. Biometrics 57:158-167

See Also

truePrevMulti, truePrevMulti2

Examples

how is a 2-test model defined?

define_x(2)
Definition of the apparent test results, 'x', for 2 tests:
x[1] : T1-,T2-
x[2] : T1-,T2+
x[3] : T1+,T2-
x[4] : T1+,T2+

define_prior(2)
Conditional probability scheme
Definition of the prior, 'theta', for 2 tests:
theta[1] : P(D+) = TP
theta[2] : P(T1+|D+) = SE1
theta[3] : P(T1-|D-) = SP1
theta[4] : P(T2+|D+,T1+)
theta[5] : P(T2+|D+,T1-)
theta[6] : P(T2-|D-,T1-)
theta[7] : P(T2-|D-,T1+)

define_prior2(2)
Covariance scheme
Definition of the prior for 2 tests:
TP : True Prevalence
SE[1] : Sensitity T1
SE[2] : Sensitity T2
SP[1] : Specificity T1
SP[2] : Specificity T2
a[1] : Covariance(T1,T2|D+)
b[1] : Covariance(T1,T2|D-)

how is a 3-test model defined?

define_x(3)
Definition of the apparent test results, 'x', for 3 tests:

plot-methods 11

x[1] : T1-,T2-,T3-
x[2] : T1-,T2-,T3+
x[3] : T1-,T2+,T3-
x[4] : T1-,T2+,T3+
x[5] : T1+,T2-,T3-
x[6] : T1+,T2-,T3+
x[7] : T1+,T2+,T3-
x[8] : T1+,T2+,T3+

define_prior(3)
Conditional probability scheme
Definition of the prior, 'theta', for 3 tests:
theta[1] : P(D+) = TP
theta[2] : P(T1+|D+) = SE1
theta[3] : P(T1-|D-) = SP1
theta[4] : P(T2+|D+,T1+)
theta[5] : P(T2+|D+,T1-)
theta[6] : P(T2-|D-,T1-)
theta[7] : P(T2-|D-,T1+)
theta[8] : P(T3+|D+,T1+,T2+)
theta[9] : P(T3+|D+,T1+,T2-)
theta[10] : P(T3+|D+,T1-,T2+)
theta[11] : P(T3+|D+,T1-,T2-)
theta[12] : P(T3-|D-,T1-,T2-)
theta[13] : P(T3-|D-,T1-,T2+)
theta[14] : P(T3-|D-,T1+,T2-)
theta[15] : P(T3-|D-,T1+,T2+)

define_prior2(3)
Covariance scheme
Definition of the prior for 3 tests:
TP : True Prevalence
SE[1] : Sensitity T1
SE[2] : Sensitity T2
SE[3] : Sensitity T3
SP[1] : Specificity T1
SP[2] : Specificity T2
SP[3] : Specificity T3
a[1] : Covariance(T1,T2|D+)
a[2] : Covariance(T1,T3|D+)
a[3] : Covariance(T2,T3|D+)
a[4] : Covariance(T1,T2,T3|D+)
b[1] : Covariance(T1,T2|D-)
b[2] : Covariance(T1,T3|D-)
b[3] : Covariance(T2,T3|D-)
b[4] : Covariance(T1,T2,T3|D-)

plot-methods Methods for Function plot in Package prevalence

12 plot-methods-coda

Description

Plot objects of class prev

Usage

S4 method for signature 'prev,ANY'
plot(x, y = NULL, ...)

Arguments

x An object of class prev
y Which parameter to plot? Defaults to NULL, in which case TP will be used
... Other arguments to pass to the plot function

Methods

signature(x = "prev", y = "ANY") Show density, trace, Brooks-Gelman-Rubin and autocorrelation
plots.

See Also

prev-class
densplot-methods, traceplot-methods, gelman.plot-methods, autocorr.plot-methods

plot-methods-coda Plotting functions from package coda

Description

Different plotting functions from package coda have been made available as method to class prev

Usage

S4 method for signature 'prev'
densplot(x, exclude_fixed = TRUE, ...)

S4 method for signature 'prev'
traceplot(x, exclude_fixed = TRUE, ...)

S4 method for signature 'prev'
autocorr.plot(x, exclude_fixed = TRUE, chain = 1, ...)

Arguments

x An object of class prev
exclude_fixed Should fixed parameters be excluded from plotting? defaults to TRUE

chain Which chain to plot in autocorr.plot; defaults to 1
... Other arguments to pass to the specific plot function.

prev-class 13

Methods

signature(x = "prev") Show density, trace, Brooks-Gelman-Rubin and autocorrelation plots.

See Also

prev-class
plot-methods
densplot, traceplot, gelman.plot, autocorr.plot

prev-class Class "prev"

Description

The "prev" class represents output from Bayesian true prevalence estimation models.

Objects from the Class

Objects of class "prev" are created by truePrev, truePrevMulti, truePrevMulti2 and truePrevPools.

Slots

Objects of class "prev" contain the following four slots:

par: A list of input parameters

model: The fitted Bayesian model, in BUGS language (S3 class "prevModel")

mcmc: A list, with one element per chain, of the simulated true prevalences, sensitivities and speci-
ficities

diagnostics: A list with elements for the Deviance Information Criterion ($DIC), the Brooks-
Gelman-Rubin statistic ($BGR), and in the case of truePrevMulti and truePrevMulti2, the
Bayes-P statistic ($bayesP)

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

See Also

truePrev, truePrevMulti, truePrevMulti2, truePrevPools
show-methods, print-methods, summary-methods, convert-methods, plot-methods, plot-methods-coda

14 print-methods

Examples

Taenia solium cysticercosis in Nepal
SE <- list(dist = "uniform", min = 0.60, max = 1.00)
SP <- list(dist = "uniform", min = 0.75, max = 1.00)
TP <- truePrev(x = 142, n = 742, SE = SE, SP = SP)

Summarize estimates per chain
summary(TP)

Diagnostic plots
par(mfrow = c(2, 2))
plot(TP)

Generic plots from package coda
par(mfrow = c(1, 1))
densplot(TP)
traceplot(TP)
gelman.plot(TP)
autocorr.plot(TP)

Use 'slotNames()' to see the slots of object TP
slotNames(TP)

Every slot can be accessed using the '@' operator
Use 'str()' to see the structure of each object
str(TP@par) # input parameters
str(TP@model) # fitted model
str(TP@mcmc) # simulated TP, SE, SP
str(TP@diagnostics) # DIC and BGR (and bayesP)

Each element of TP@mcmc inherits from coda class 'mcmc.list'
List all available methods for this class
methods(class = "mcmc.list")
List all available functions in the coda package
library(help = "coda")

Highest Posterior Density interval, from coda package
coda::HPDinterval(TP@mcmc$TP)

print-methods Methods for Function print in Package prevalence

Description

Print objects of class prev

Usage

S4 method for signature 'prev'
print(x, conf.level = 0.95, dig = 3, ...)

propCI 15

Arguments

x An object of class prev

conf.level Confidence level to be used in credibility interval

dig Number of decimal digits to print

... Other arguments to pass to the print function

Methods

signature(x = "prev") Print mean, median, mode, standard deviation and credibility interval of
estimated true prevalence, sensitivities and specificities. In addition, print multivariate Brooks-
Gelman-Rubin statistic (or univariate BGR statistic with corresponding upper confidence limit
in case of a single stochastic node). BGR values substantially above 1 indicate lack of con-
vergence. For prev objects created by truePrevMulti, the Bayes-P statistic is also printed.
Bayes-P should be as close to 0.5 as possible.

See Also

prev-class
gelman.diag

propCI Calculate confidence intervals for prevalences and other proportions

Description

The propCI function calculates five types of confidence intervals for proportions:

• Wald interval (= Normal approximation interval, asymptotic interval)

• Agresti-Coull interval (= adjusted Wald interval)

• Exact interval (= Clopper-Pearson interval)

• Jeffreys interval (= Bayesian interval)

• Wilson score interval

Usage

propCI(x, n, method = "all", level = 0.95, sortby = "level")

Arguments

x Number of successes (positive samples)

n Number of trials (sample size)

method Confidence interval calculation method; see details

level Confidence level for confidence intervals

sortby Sort results by "level" or "method"

16 propCI

Details

Five methods are available for calculating confidence intervals. For convenience, synonyms are
allowed. Please refer to the PDF version of the manual for proper formatting of the below formulas.

"agresti.coull", "agresti-coull", "ac"

ñ = n+ z21−α
2

p̃ =
1

ñ
(x+

1

2
z21−α

2
)

p̃± z1−α
2

√
p̃(1− p̃)

ñ

"exact", "clopper-pearson", "cp"

(Beta(
α

2
;x, n− x+ 1), Beta(1− α

2
;x+ 1, n− x))

"jeffreys", "bayes"

(Beta(
α

2
;x+ 0.5, n− x+ 0.5), Beta(1− α

2
;x+ 0.5, n− x+ 0.5))

"wald", "asymptotic", "normal"

p± z1−α
2

√
p(1− p)

n

"wilson"

p+
z2
1−α

2

2n ± z1−α
2

√
p(1−p)

n +
z2
1−α

2

4n2

1 +
z2
1−α

2

n

Value

Data frame with seven columns:

x Number of successes (positive samples)

n Number of trials (sample size)

p Proportion of successes (prevalence)

method Confidence interval calculation method

level Confidence level

lower Lower confidence limit

upper Upper confidence limit

Note

In case the observed prevalence equals 0% (ie, x == 0), an upper one-sided confidence interval is
returned. In case the observed prevalence equals 100% (ie, x == n), a lower one-sided confidence
interval is returned. In all other cases, two-sided confidence intervals are returned.

show-methods 17

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

Examples

All methods, 95% confidence intervals
propCI(x = 142, n = 742)

Wald-type 90%, 95% and 99% confidence intervals
propCI(x = 142, n = 742, method = "wald", level = c(0.90, 0.95, 0.99))

show-methods Methods for Function show in Package prevalence

Description

Show objects of class prev

Usage

S4 method for signature 'prev'
show(object)

Arguments

object An object of class prev

Methods

signature(object = "prev") Corresponds to print(object)

See Also

prev-class

18 truePrev

summary-methods Methods for Function summary in Package prevalence

Description

Summarize objects of class prev

Usage

S4 method for signature 'prev'
summary(object, conf.level)

Arguments

object An object of class prev

conf.level Confidence level to be used in credibility intervals

Methods

signature(object = "prev") Obtain mean, median, mode, standard deviation, variance, credi-
bility interval and number of samples for each chain separately and for all chains combined.

See Also

prev-class

truePrev Estimate true prevalence from individuals samples

Description

Bayesian estimation of true prevalence from apparent prevalence obtained by testing individual
samples.

Usage

truePrev(x, n, SE = 1, SP = 1, prior = c(1, 1),
nchains = 2, burnin = 10000, update = 10000,
verbose = FALSE)

truePrev 19

Arguments

x The apparent number of positive samples

n The sample size

SE, SP The prior distribution for sensitivity (SE) and specificity SP); see ’Details’ below
for specification of these distributions

prior The parameters of the prior Beta distribution for true prevalence; defaults to
c(1, 1)

nchains The number of chains used in the estimation process; 'n' must be ≥ 2

burnin The number of discarded model iterations; defaults to 10,000

update The number of withheld model iterations; defaults to 10,000

verbose Logical flag, indicating if JAGS process output should be printed to the R con-
sole; defaults to FALSE

Details

truePrev calls on JAGS/rjags to estimate the true prevalence from the apparent prevalence in a
Bayesian framework. The default model, in BUGS language, is given below. To see the actual fitted
model, see the model slot of the prev-object.

model {
x ~ dbin(AP, n)
AP <- SE * TP + (1 - SP) * (1 - TP)
SE ~ user-defined (see below)
SP ~ user-defined (see below)
TP ~ dbeta(prior[1], prior[2])

}

The test sensitivity (SE) and specificity (SP) can be specified, independently, as one of "fixed",
"uniform", "beta", "pert", or "beta-expert", with "fixed" as the default.

Distribution parameters can be specified in a named list() as follows:

• Fixed: list(dist = "fixed", par)

• Uniform: list(dist = "uniform", min, max)

• Beta: list(dist = "beta", alpha, beta)

• Beta-PERT: list(dist = "pert", method, a, m, b, k)
'method' must be "classic" or "vose";
'a' denotes the pessimistic (minimum) estimate, 'm' the most likely estimate, and 'b' the
optimistic (maximum) estimate;
'k' denotes the scale parameter.
See betaPERT for more information on Beta-PERT parametrization.

20 truePrev

• Beta-Expert: list(dist = "beta-expert", mode, mean, lower, upper, p)
'mode' denotes the most likely estimate, 'mean' the mean estimate;
'lower' denotes the lower bound, 'upper' the upper bound;
'p' denotes the confidence level of the expert.
Only mode or mean should be specified; lower and upper can be specified together or alone.
See betaExpert for more information on Beta-Expert parametrization.

For Uniform, Beta and Beta-PERT distributions, BUGS-style short-hand notation is also allowed:

• Uniform: ~dunif(min, max)

• Beta: ~dbeta(alpha, beta)

• Beta-PERT: ~dpert(min, mode, max)

Value

An object of class prev.

Note

Markov chain Monte Carlo sampling in truePrev is performed by JAGS (Just Another Gibbs
Sampler) through the rjags package. JAGS can be downloaded from https://mcmc-jags.sourceforge.
io/.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

• Speybroeck N, Devleesschauwer B, Joseph L, Berkvens D (2013) Misclassification errors in
prevalence estimation: Bayesian handling with care. Int J Public Health 58:791-795

• Online Shiny application: https://cbra.shinyapps.io/truePrev/

See Also

coda for various functions that can be applied to the prev@mcmc object
truePrevMulti: estimate true prevalence from apparent prevalence obtained by testing individual
samples with multiple tests, using a conditional probability scheme
truePrevMulti2: estimate true prevalence from apparent prevalence obtained by testing individual
samples with multiple tests, using a covariance scheme
truePrevPools: estimate true prevalence from apparent prevalence obtained by testing pooled
samples
betaPERT: calculate the parameters of a Beta-PERT distribution
betaExpert: calculate the parameters of a Beta distribution based on expert opinion

https://mcmc-jags.sourceforge.io/
https://mcmc-jags.sourceforge.io/
https://cbra.shinyapps.io/truePrev/

truePrevMulti 21

Examples

Taenia solium cysticercosis in Nepal
142 positives out of 742 pigs sampled

Model SE and SP based on literature data
Sensitivity ranges uniformly between 60% and 100%
Specificity ranges uniformly between 75% and 100%
#> BUGS-style:
truePrev(x = 142, n = 742,

SE = ~dunif(0.60, 1.00), SP = ~dunif(0.75, 1.00))

#> list-style:
SE <- list(dist = "uniform", min = 0.60, max = 1.00)
SP <- list(dist = "uniform", min = 0.75, max = 1.00)
truePrev(x = 142, n = 742, SE = SE, SP = SP)

Model SE and SP based on expert opinions
Sensitivity lies in between 60% and 100%; most likely value is 90%
Specificity is with 95% confidence larger than 75%; most likely value is 90%
SE <- list(dist = "pert", a = 0.60, m = 0.90, b = 1.00)
SP <- list(dist = "beta-expert", mode = 0.90, lower = 0.75, p = 0.95)
truePrev(x = 142, n = 742, SE = SE, SP = SP)

Model SE and SP as fixed values (each 90%)
truePrev(x = 142, n = 742, SE = 0.90, SP = 0.90)

truePrevMulti Estimate true prevalence from individuals samples using multiple tests
– conditional probability scheme

Description

Bayesian estimation of true prevalence from apparent prevalence obtained by applying multiple
tests to individual samples. truePrevMulti implements the approach described by Berkvens et
al. (2006), which uses a multinomial distribution to model observed test results, and in which
conditional dependence between tests is modelled through conditional probabilities.

Usage

truePrevMulti(x, n, prior, nchains = 2, burnin = 10000, update = 10000,
verbose = FALSE)

Arguments

x Vector of apparent test results; see ’Details’ below

n The total sample size

prior The prior distribution for theta; see ’Details’ below

nchains The number of chains used in the estimation process; must be ≥ 2

22 truePrevMulti

burnin The number of discarded model iterations; defaults to 10,000

update The number of withheld model iterations; defaults to 10,000

verbose Logical flag, indicating if JAGS process output should be printed to the R con-
sole; defaults to FALSE

Details

truePrevMulti calls on JAGS via the rjags package to estimate true prevalence from apparent
prevalence in a Bayesian framework. truePrevMulti fits a multinomial model to the apparent test
results obtained by testing individual samples with a given number of tests. To see the actual fitted
model, see the model slot of the prev-object.

The vector of apparent tests results, x, must contain the number of samples corresponding to each
combination of test results. To see how this vector is defined for the number of tests h at hand, use
define_x.

The prior in the multinomial model consists of a vector theta, which holds values for the true
prevalence (TP), the sensitivity and specificity of the first test (SE1, SP1), and the conditional de-
pendencies between the results of the subsequent tests and the preceding one(s). To see how this
vector is defined for the number of tests n at hand, use define_prior.

The values of prior can be specified in two ways, referred to as BUGS-style and list-style, respec-
tively. See also below for some examples.

For BUGS-style specification, the values of theta should be given between curly brackets (i.e., {}),
separated by line breaks. theta values can be specified to be deterministic (i.e., fixed), using the
<- operator, or stochastic, using the ~ operator. In the latter case, the following distributions can be
used:

• Uniform: dunif(min, max)

• Beta: dbeta(alpha, beta)

• Beta-PERT: dpert(min, mode, max)

Alternatively, theta values can be specified in a named list() as follows:

• Fixed: list(dist = "fixed", par)

• Uniform: list(dist = "uniform", min, max)

• Beta: list(dist = "beta", alpha, beta)

• Beta-PERT: list(dist = "pert", method, a, m, b, k)
'method' must be "classic" or "vose";
'a' denotes the pessimistic (minimum) estimate, 'm' the most likely estimate, and 'b' the
optimistic (maximum) estimate;
'k' denotes the scale parameter.
See betaPERT for more information on Beta-PERT parameterization.

truePrevMulti 23

• Beta-Expert: list(dist = "beta-expert", mode, mean, lower, upper, p)
'mode' denotes the most likely estimate, 'mean' the mean estimate;
'lower' denotes the lower bound, 'upper' the upper bound;
'p' denotes the confidence level of the expert.
Only mode or mean should be specified; lower and upper can be specified together or alone.
See betaExpert for more information on Beta-Expert parameterization.

Value

An object of class prev.

Note

Markov chain Monte Carlo sampling in truePrevMulti is performed by JAGS (Just Another
Gibbs Sampler) through the rjags package. JAGS can be downloaded from https://mcmc-jags.
sourceforge.io/.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

• Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E (2006) Estimating disease prevalence
in a Bayesian framework using probabilistic constraints. Epidemiology 17:145-153

• Habib I, Sampers I, Uyttendaele M, De Zutter L, Berkvens D (2008) A Bayesian modelling
framework to estimate Campylobacter prevalence and culture methods sensitivity: application
to a chicken meat survey in Belgium. J Appl Microbiol 105:2002-2008

• Geurden T, Berkvens D, Casaert S, Vercruysse J, Claerebout E (2008) A Bayesian evalua-
tion of three diagnostic assays for the detection of Giardia duodenalis in symptomatic and
asymptomatic dogs. Vet Parasitol 157:14-20

See Also

define_x: how to define the vector of apparent test results x
define_prior: how to define the vector of theta values in prior

coda for various functions that can be applied to the prev@mcmc object
truePrevMulti2: estimate true prevalence from apparent prevalence obtained by testing individual
samples with multiple tests, using a covariance scheme
truePrev: estimate true prevalence from apparent prevalence obtained by testing individual sam-
ples with a single test
truePrevPools: estimate true prevalence from apparent prevalence obtained by testing pooled
samples
betaPERT: calculate the parameters of a Beta-PERT distribution
betaExpert: calculate the parameters of a Beta distribution based on expert opinion

https://mcmc-jags.sourceforge.io/
https://mcmc-jags.sourceforge.io/

24 truePrevMulti

Examples

Not run:
===
2-TEST EXAMPLE: Campylobacter

Two tests were performed on 656 chicken meat samples
-> T1 = enrichment culture
-> T2 = direct plating
The following assumption were made:
-> TP is larger than 45% and smaller than 80%
-> SE1 must lie within 24% and 50%
-> SP1 and SP2 both equal 100%
-> beta(30, 12) describes P(T2+|D+,T1+)
The following results were obtained:
-> 113 samples T1+,T2+
-> 46 samples T1+,T2-
-> 156 samples T1-,T2+
-> 341 samples T1-,T2-
===

how is the 2-test model defined?
define_x(2)
define_prior(2)

fit campylobacter 2-test model
campy <-
truePrevMulti(

x = c(113, 46, 156, 341),
n = 656,
prior = {
theta[1] ~ dunif(0.45, 0.80)
theta[2] ~ dunif(0.24, 0.50)
theta[3] <- 1
theta[4] ~ dbeta(30, 12)
theta[5] ~ dbeta(1, 1)
theta[6] <- 1
theta[7] <- 1

}
)

fit same model using 'list-style'
campy <-
truePrevMulti(

x = c(113, 46, 156, 341),
n = 656,
prior =
list(

theta1 = list(dist = "uniform", min = 0.45, max = 0.80),
theta2 = list(dist = "uniform", min = 0.24, max = 0.50),
theta3 = 1,
theta4 = list(dist = "beta", alpha = 30, beta = 12),
theta5 = list(dist = "beta", alpha = 1, beta = 1),

truePrevMulti 25

theta6 = 1,
theta7 = 1

)
)

show model results
campy

explore model structure
str(campy) # overall structure
str(campy@par) # structure of slot 'par'
str(campy@mcmc) # structure of slot 'mcmc'
campy@model # fitted model
campy@diagnostics # DIC, BGR and Bayes-P values

standard methods
print(campy)
summary(campy)
par(mfrow = c(2, 2))
plot(campy) # shows plots of TP by default
plot(campy, "SE1") # same plots for SE1
plot(campy, "SE2") # same plots for SE2

coda plots of TP, SE1, SE2
par(mfrow = c(1, 3))
densplot(campy, col = "red")
traceplot(campy)
gelman.plot(campy)
autocorr.plot(campy)

===
3-TEST EXAMPLE: Giardia

Three tests were performed on stools from 272 dogs
-> T1 = immunofluorescence assay
-> T2 = direct microscopy
-> T3 = SNAP immunochromatography
The following assumption were made:
-> TP is smaller than 20%
-> SE1 must be higher than 80%
-> SP1 must be higher than 90%
The following results were obtained:
-> 6 samples T1+,T2+,T3+
-> 4 samples T1+,T2+,T3-
-> 12 samples T1+,T2-,T3+
-> 12 samples T1+,T2-,T3-
-> 1 sample T1-,T2+,T3+
-> 14 samples T1-,T2+,T3-
-> 3 samples T1-,T2-,T3+
-> 220 samples T1-,T2-,T3-
===

26 truePrevMulti2

how is the 3-test model defined?
define_x(3)
define_prior(3)

fit giardia 3-test model
giardia <-
truePrevMulti(

x = c(6, 4, 12, 12, 1, 14, 3, 220),
n = 272,
prior = {
theta[1] ~ dunif(0.00, 0.20)
theta[2] ~ dunif(0.90, 1.00)
theta[3] ~ dunif(0.80, 1.00)
theta[4] ~ dbeta(1, 1)
theta[5] ~ dbeta(1, 1)
theta[6] ~ dbeta(1, 1)
theta[7] ~ dbeta(1, 1)
theta[8] ~ dbeta(1, 1)
theta[9] ~ dbeta(1, 1)
theta[10] ~ dbeta(1, 1)
theta[11] ~ dbeta(1, 1)
theta[12] ~ dbeta(1, 1)
theta[13] ~ dbeta(1, 1)
theta[14] ~ dbeta(1, 1)
theta[15] ~ dbeta(1, 1)

}
)

show model results
giardia

coda densplots
par(mfcol = c(2, 4))
densplot(giardia, col = "red")

End(Not run)

truePrevMulti2 Estimate true prevalence from individuals samples using multiple tests
– covariance scheme

Description

Bayesian estimation of true prevalence from apparent prevalence obtained by applying multiple
tests to individual samples. truePrevMulti2 implements and extends the approach described by
Dendukuri and Joseph (2001), which uses a multinomial distribution to model observed test results,
and in which conditional dependence between tests is modelled through covariances.

truePrevMulti2 27

Usage

truePrevMulti2(x, n, prior, nchains = 2, burnin = 10000, update = 10000,
verbose = FALSE)

Arguments

x Vector of apparent test results; see ’Details’ below

n The total sample size

prior The prior distributions; see ’Details’ below

nchains The number of chains used in the estimation process; must be ≥ 2

burnin The number of discarded model iterations; defaults to 10,000

update The number of withheld model iterations; defaults to 10,000

verbose Logical flag, indicating if JAGS process output should be printed to the R con-
sole; defaults to FALSE

Details

truePrevMulti2 calls on JAGS via the rjags package to estimate true prevalence from apparent
prevalence in a Bayesian framework. truePrevMulti2 fits a multinomial model to the apparent
test results obtained by testing individual samples with a given number of tests. To see the actual
fitted model, see the model slot of the prev-object.

The vector of apparent tests results, x, must contain the number of samples corresponding to each
combination of test results. To see how this vector is defined for the number of tests h at hand, use
define_x.

Argument prior consists of prior distributions for:

• True Prevalence: TP

• SEnsitivity of each individual test: vector SE

• SPecificity of each individual test: vector SP

• Conditional covariance of all possible test combinations given a truly positive disease status:
vector a

• Conditional covariance of all possible test combinations given a truly negative disease status:
vector b

To see how prior is defined for the number of tests h at hand, use define_prior2.

The values of prior can be specified in two ways, referred to as BUGS-style and list-style, respec-
tively. See also below for some examples.

For BUGS-style specification, the values of prior should be given between curly brackets (i.e.,
{}), separated by line breaks. Priors can be specified to be deterministic (i.e., fixed), using the <-
operator, or stochastic, using the ~ operator. In the latter case, the following distributions can be
used:

28 truePrevMulti2

• Uniform: dunif(min, max)
• Beta: dbeta(alpha, beta)
• Beta-PERT: dpert(min, mode, max)

Alternatively, priors can be specified in a named list() as follows:

• Fixed: list(dist = "fixed", par)

• Uniform: list(dist = "uniform", min, max)

• Beta: list(dist = "beta", alpha, beta)

• Beta-PERT: list(dist = "pert", method, a, m, b, k)
'method' must be "classic" or "vose";
'a' denotes the pessimistic (minimum) estimate, 'm' the most likely estimate, and 'b' the
optimistic (maximum) estimate;
'k' denotes the scale parameter.
See betaPERT for more information on Beta-PERT parameterization.

• Beta-Expert: list(dist = "beta-expert", mode, mean, lower, upper, p)
'mode' denotes the most likely estimate, 'mean' the mean estimate;
'lower' denotes the lower bound, 'upper' the upper bound;
'p' denotes the confidence level of the expert.
Only mode or mean should be specified; lower and upper can be specified together or alone.
See betaExpert for more information on Beta-Expert parameterization.

Value

An object of class prev.

Note

Markov chain Monte Carlo sampling in truePrevMulti2 is performed by JAGS (Just Another
Gibbs Sampler) through the rjags package. JAGS can be downloaded from https://mcmc-jags.
sourceforge.io/.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

• Dendukuri N, Joseph L (2001) Bayesian approaches to modeling the conditional dependence
between multiple diagnostic tests. Biometrics 57:158-167

See Also

define_x: how to define the vector of apparent test results x
define_prior2: how to define prior

coda for various functions that can be applied to the prev@mcmc object
truePrevMulti: estimate true prevalence from apparent prevalence obtained by testing individual

https://mcmc-jags.sourceforge.io/
https://mcmc-jags.sourceforge.io/

truePrevMulti2 29

samples with multiple tests, using a conditional probability scheme
truePrev: estimate true prevalence from apparent prevalence obtained by testing individual sam-
ples with a single test
truePrevPools: estimate true prevalence from apparent prevalence obtained by testing pooled
samples
betaPERT: calculate the parameters of a Beta-PERT distribution
betaExpert: calculate the parameters of a Beta distribution based on expert opinion

Examples

Not run:
===
2-TEST EXAMPLE: Strongyloides

Two tests were performed on 162 humans
-> T1 = stool examination
-> T2 = serology test
Expert opinion generated the following priors:
-> SE1 ~ dbeta(4.44, 13.31)
-> SP1 ~ dbeta(71.25, 3.75)
-> SE2 ~ dbeta(21.96, 5.49)
-> SP2 ~ dbeta(4.10, 1.76)
The following results were obtained:
-> 38 samples T1+,T2+
-> 2 samples T1+,T2-
-> 87 samples T1-,T2+
-> 35 samples T1-,T2-
===

how is the 2-test model defined?
define_x(2)
define_prior2(2)

fit Strongyloides 2-test model
a first model assumes conditional independence
-> set covariance terms to zero
strongy_indep <-
truePrevMulti2(

x = c(38, 2, 87, 35),
n = 162,
prior = {

TP ~ dbeta(1, 1)
SE[1] ~ dbeta(4.44, 13.31)
SP[1] ~ dbeta(71.25, 3.75)
SE[2] ~ dbeta(21.96, 5.49)
SP[2] ~ dbeta(4.10, 1.76)
a[1] <- 0
b[1] <- 0

})

show model results
strongy_indep

30 truePrevMulti2

fit same model using 'list-style'
strongy_indep <-
truePrevMulti2(

x = c(38, 2, 87, 35),
n = 162,
prior =
list(

TP = list(dist = "beta", alpha = 1, beta = 1),
SE1 = list(dist = "beta", alpha = 4.44, beta = 13.31),
SP1 = list(dist = "beta", alpha = 71.25, beta = 3.75),
SE2 = list(dist = "beta", alpha = 21.96, beta = 5.49),
SP2 = list(dist = "beta", alpha = 4.10, beta = 1.76),
a1 = 0,
b1 = 0

)
)

show model results
strongy_indep

fit Strongyloides 2-test model
a second model allows for conditional dependence
-> a[1] is the covariance between T1 and T2, given D+
-> b[1] is the covariance between T1 and T2, given D-
-> a[1] and b[1] can range between +/- 2^-h, ie, (-.25, .25)
strongy <-
truePrevMulti2(

x = c(38, 2, 87, 35),
n = 162,
prior = {

TP ~ dbeta(1, 1)
SE[1] ~ dbeta(4.44, 13.31)
SP[1] ~ dbeta(71.25, 3.75)
SE[2] ~ dbeta(21.96, 5.49)
SP[2] ~ dbeta(4.10, 1.76)
a[1] ~ dunif(-0.25, 0.25)
b[1] ~ dunif(-0.25, 0.25)

})

explore model structure
str(strongy) # overall structure
str(strongy@par) # structure of slot 'par'
str(strongy@mcmc) # structure of slot 'mcmc'
strongy@model # fitted model
strongy@diagnostics # DIC, BGR and Bayes-P values

standard methods
print(strongy)
summary(strongy)
par(mfrow = c(2, 2))
plot(strongy) # shows plots of TP by default
plot(strongy, "SE[1]") # same plots for SE1

truePrevPools 31

plot(strongy, "SE[2]") # same plots for SE2
plot(strongy, "SP[1]") # same plots for SP1
plot(strongy, "SP[2]") # same plots for SP2
plot(strongy, "a[1]") # same plots for a[1]
plot(strongy, "b[1]") # same plots for b[1]

coda plots of all parameters
par(mfrow = c(2, 4)); densplot(strongy, col = "red")
par(mfrow = c(2, 4)); traceplot(strongy)
par(mfrow = c(2, 4)); gelman.plot(strongy)
par(mfrow = c(2, 4)); autocorr.plot(strongy)

End(Not run)

truePrevPools Estimate true prevalence from pooled samples

Description

Bayesian estimation of true prevalence from apparent prevalence obtained by testing pooled sam-
ples.

Usage

truePrevPools(x, n, SE = 1, SP = 1, prior = c(1, 1),
nchains = 2, burnin = 10000, update = 10000,
verbose = FALSE)

Arguments

x The vector of indicator variables, indicating whether a pool was positive ("1")
or negative ("0")

n The vector of pool sizes

SE, SP The prior distribution for sensitivity (SE) and specificity (SP); see ’Details’ be-
low for specification of these distributions

prior The parameters of the prior Beta distribution for true prevalence; defaults to
c(1, 1)

nchains The number of chains used in the estimation process; nchains must be ≥ 2

burnin The number of discarded model iterations; defaults to 10,000

update The number of withheld model iterations; defaults to 10,000

verbose Logical flag, indicating if JAGS process output should be printed to the R con-
sole; defaults to FALSE

32 truePrevPools

Details

truePrevPools calls on JAGS/rjags to estimate the true prevalence from the apparent prevalence
in a Bayesian framework. The default model, in BUGS language, is given below. To see the actual
fitted model, see the model slot of the prev-object.

model {
for (i in 1:N) {
x[i] ~ dbern(AP[i])

AP[i] <- SEpool[i] * (1 - pow(1 - TP, n[i])) + (1 - SPpool[i]) * pow(1 - TP, n[i])
SEpool[i] <- 1 - (pow(1 - SE, n[i] * TP) * pow(SP, n[i] * (1 - TP)))
SPpool[i] <- pow(SP, n[i])

}
SE ~ user-defined (see below)
SP ~ user-defined (see below)
TP ~ dbeta(prior[1], prior[2])
}

The test sensitivity (SE) and specificity (SP) can be specified by the user, independently, as one of
"fixed", "uniform", "beta", "pert", or "beta-expert", with "fixed" as the default. Note that
SE and SP must correspond to the test characteristics for testing individual samples; truePrevPools
will calculate SEpool and SPpool, the sensitivity and specificitiy for testing pooled samples, based
on Boelaert et al. (2000).

Distribution parameters can be specified in a named list() as follows:

• Fixed: list(dist = "fixed", par)

• Uniform: list(dist = "uniform", min, max)

• Beta: list(dist = "beta", alpha, beta)

• PERT: list(dist = "pert", method, a, m, b, k)
'method' must be "classic" or "vose";
'a' denotes the pessimistic (minimum) estimate, 'm' the most likely estimate, and 'b' the
optimistic (maximum) estimate;
'k' denotes the scale parameter.
See betaPERT for more information on Beta-PERT parametrization.

• Beta-Expert: list(dist = "beta-expert", mode, mean, lower, upper, p)
'mode' denotes the most likely estimate, 'mean' the mean estimate;
'lower' denotes the lower bound, 'upper' the upper bound;
'p' denotes the confidence level of the expert.
Only mode or mean should be specified; lower and upper can be specified together or alone.
See betaExpert for more information on Beta-Expert parameterization.

For Uniform, Beta and Beta-PERT distributions, BUGS-style short-hand notation is also allowed:

• Uniform: ~dunif(min, max)
• Beta: ~dbeta(alpha, beta)
• Beta-PERT: ~dpert(min, mode, max)

truePrevPools 33

Value

An object of class prev.

Note

Markov chain Monte Carlo sampling in truePrevPools is performed by JAGS (Just Another
Gibbs Sampler) through the rjags package. JAGS can be downloaded from https://mcmc-jags.
sourceforge.io/.

Author(s)

Brecht Devleesschauwer <<brechtdv@gmail.com>>

References

• Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D (2012) Estimating
the prevalence of infections in vector populations using pools of samples. Med Vet Entomol
26:361-371

• Boelaert F, Walravens K, Biront P, Vermeersch JP, Berkvens D, Godfroid J (2000) Prevalence
of paratuberculosis (Johne’s disease) in the Belgian cattle population. Vet Microbiol 77:269-
281

See Also

coda for various functions that can be applied to the prev@mcmc object
truePrev: estimate true prevalence from apparent prevalence obtained by testing individual sam-
ples with a single test
truePrevMulti: estimate true prevalence from apparent prevalence obtained by testing individual
samples with multiple tests, using a conditional probability scheme
truePrevMulti2: estimate true prevalence from apparent prevalence obtained by testing individual
samples with multiple tests, using a covariance scheme
betaPERT: calculate the parameters of a Beta-PERT distribution
betaExpert: calculate the parameters of a Beta distribution based on expert opinion

Examples

Sandflies in Aurabani, Nepal, 2007
pool_results <- c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
pool_sizes <- c(2, 1, 6, 10, 1, 7, 1, 4, 1, 3)

Sensitivity ranges uniformly between 60% and 95%
Specificity is considered to be 100%

#> BUGS-style:
truePrevPools(x = pool_results, n = pool_sizes,

SE = ~dunif(0.60, 0.95), SP = 1)

#> list-style:
SE <- list(dist = "uniform", min = 0.60, max = 0.95)
truePrevPools(x = pool_results, n = pool_sizes,

https://mcmc-jags.sourceforge.io/
https://mcmc-jags.sourceforge.io/

34 truePrevPools

SE = SE, SP = 1)

Index

∗ Expert
betaExpert, 3
betaPERT, 5

∗ PERT
betaPERT, 5

∗ classes
prev-class, 13

∗ confidence interval
propCI, 15

∗ methods
convert-methods, 7
plot-methods, 11
plot-methods-coda, 12
print-methods, 14
show-methods, 17
summary-methods, 18

∗ package
prevalence-package, 2

∗ prevalence
propCI, 15

as.matrix,prev-method
(convert-methods), 7

as.matrix-methods (convert-methods), 7
autocorr.plot, 13
autocorr.plot,prev-method

(plot-methods-coda), 12
autocorr.plot-methods

(plot-methods-coda), 12
autocorrelation, 12, 13

betaExpert, 3, 3, 4, 7, 20, 23, 28, 29, 32, 33
betaPERT, 3, 4, 5, 19, 20, 22, 23, 28, 29, 32, 33
Brooks-Gelman-Rubin, 13
Brooks-Gelman-Rubin statistic, 15

coda, 20, 23, 28, 33
convert-methods, 7

define, 9

define_prior, 9, 22, 23
define_prior (define), 9
define_prior2, 9, 27, 28
define_prior2 (define), 9
define_x, 22, 23, 27, 28
define_x (define), 9
density, 12, 13
densplot, 13
densplot,prev-method

(plot-methods-coda), 12
densplot-methods (plot-methods-coda), 12

gelman.diag, 15
gelman.plot, 13
gelman.plot,prev-method

(plot-methods-coda), 12
gelman.plot-methods

(plot-methods-coda), 12

matrix, 8

optimize, 4

plot,prev,ANY-method (plot-methods), 11
plot,prev-method (plot-methods), 11
plot-methods, 11
plot-methods-coda, 12
plot.betaExpert (betaExpert), 3
plot.betaPERT (betaPERT), 5
prev, 19, 20, 22, 23, 27, 28, 32, 33
prev-class, 13
prevalence (prevalence-package), 2
prevalence-package, 2
print,prev-method (print-methods), 14
print-methods, 14
print.betaExpert (betaExpert), 3
print.betaPERT (betaPERT), 5
propCI, 2, 15

rjags, 3, 19, 20, 22, 23, 27, 28, 32, 33

35

36 INDEX

show,prev-method (show-methods), 17
show-methods, 17
summary,prev-method (summary-methods),

18
summary-methods, 18

trace, 12, 13
traceplot, 13
traceplot,prev-method

(plot-methods-coda), 12
traceplot-methods (plot-methods-coda),

12
truePrev, 2, 13, 18, 23, 29, 33
truePrevMulti, 2, 9, 10, 13, 15, 20, 21, 21,

22, 28, 33
truePrevMulti2, 2, 9, 10, 13, 20, 23, 26, 26,

27, 33
truePrevPools, 3, 13, 20, 23, 29, 31

	prevalence-package
	betaExpert
	betaPERT
	convert-methods
	define
	plot-methods
	plot-methods-coda
	prev-class
	print-methods
	propCI
	show-methods
	summary-methods
	truePrev
	truePrevMulti
	truePrevMulti2
	truePrevPools
	Index

